Fluid-related Earthquake Swarms at East Java Forearc


  • Anne Sirait Prodi Geofisika FMIPA UI
  • Iman Fatchurochman 3Badan Meteorologi, Klimatologi, dan Geofisika (BMKG)

Kata Kunci:

Jawa, cross-correlated, swarm, fluid-related


In this study, seismicity along the Java margin was analyzed to identify earthquake swarms. An earthquake swarm was identified in the year 2018. The 2018 earthquake swarm off eastern Java was in the subducting plate rather than on the subducting plate. We manually picked the P-phase arrival times and waveforms were cross-correlated to identify families of events in a swarm. Analysis of the spatio-temporal distribution of families of events in swarms indicated they were fluid-related. The earthquake swarm off eastern Java appears to be associated with over-pressured fluid trapped by impermeable rocks. The existence of this swarm is indicative of the origin of the swarm other than slow-slip events on the plate interface. The identification of earthquake swarms in this study reveals an origin of swarms other than the plate interface.


Buurman, H. & M. E. West. (2010). Seismic Precursors to Volcanic Explosions During the 2006 Eruption of Augustine Volcano. In: Power, J.A., Coombs, M.L., and Freymueller, J.T., (eds.) U.S. Geological Survey Professional Paper 1769, 41 – 57.

Green, D. N. & J. Neuberg. (2006). Waveform classification of volcanic low-frequency earthquake swarms and its implication at Soufrie`re Hills Volcano, Montserrat. J. Volcanol. Geoth. Res. 153, 51 – 63, doi:10.1016/j.jvolgeores.2005.08.003

Hacker, B. R., G. A. Abers, & S. M. Peacock. (2003). Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res. 108, No. B1, 2029, doi:10.1029/2001JB001127

Hacker, B. R., S. M. Peacock, G. A. Abers, & S. D. Holloway. (2003). Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?. J. Geophys. Res. 108, No. B1, 2030, doi:10.1029/2001JB001129

Hainzl, S. (2004). Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering. Geophys. J. Int. 159, 1090–1096 doi: 10.1111/j.1365-246X.2004.02463.x

Hainzl, S., T. Fischer, & T. Dahm. (2012). Seismicity-based estimation of the driving fluid pressure in the case of swarm activity in Western Bohemia. Geophys. J. Int. 191, 271–281, doi: 10.1111/j.1365-246X.2012.05610.x

Hayes, G. P., D. J. Wald, & R. L. Johnson. (2012). Slab1.0: A three‐dimensional model of global subduction zone geometries. J. Geophys. Res. 117, B01302, doi:10.1029/2011JB008524.

Hayes, G. (2018). Slab2 - A Comprehensive Subduction Zone Geometry Model: U.S. Geological Survey data release, https://doi.org/10.5066/F7PV6JNV

Holtkamp, S. G. & M. R. Brudzinski. (2011). Earthquake swarms in circum-Pacific subduction zones. Earth Planet. Sci. Lett. 305, 215–225, doi:10.1016/j.epsl.2011.03.004

Holtkamp, S. G., M. E. Pritchard & R. B. Lohman. (2011). Earthquake swarms in South America. Geophys. J. Int. 187, 128–146 doi: 10.1111/j.1365- 246X.2011.05137.x

Hovotec-Ellis, A. J., D. R. Shelly, D. P. Hill, A. M. Pitt, P. B. Dawson, & B. A. Chouet. (2018). Deep fluid pathways beneath Mammoth Mountain, California, illuminated by migrating earthquake swarms. Sci. Adv. 4: eaat5258

Irsyam, M., S. Widiyantoro, D. Natawidjaja, I. Meilano, A. Rudyanto, S. Hidayati, W. Triyoso, N. Hanifa, D. Djarwadi, L. Faizal, et al. (2017). Peta Sumber and Bahaya Gempa Indonesia tahun 2017. Ministry of Public Works and Housing, Bandung, Indonesia (in Bahasa Indonesia).

Kirby, S. H. (1995). Intraslab earthquakes and phase changes in subducting lithosphere, Rev. Geophys. 33, 287-297

Kopp, H., E.R. Flueh, C.J. Petersen, W. Weinrebe, A. Wittwer, & Meramex Scientists. (2006). The Java margin revisited: Evidence for subduction erosion off Java, Earth Planet. Sci. Lett. 242, 130–142

Koulali, A., S. McClusky, S. Susilo, Y. Leonard, P. Cummins, P. Tregoning, I. Meilano, J. Efendi, & A. B. Wijanarto. (2016). The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning. Earth Planet. Sci. Lett. 458, 69–79 http://dx.doi.org/10.1016/j.epsl.2016.10.039

Masson, D., L. M. Parson, J. Milsom, G. Nichols, N. Sikumbang, B. Dwiyanto, & H. Kallagher. (1990). Subduction of seamounts at the Java Trench: a view with long-range side-scan sonar. Tectonophysics 185, 51 – 65

Nguyen, N., J. Griffin, A. Cipta, & P. R. Cummins. (2015). Indonesia's historical earthquakes: Modelled examples for improving the national hazard map. Geoscience Australia Record 23, http://dx.doi.org/10.11636/Record.2015.023

Shelly, D. R. & D. P. Hill. (2011) Migrating swarms of brittle‐failure earthquakes in the lower crust beneath Mammoth Mountain, California. Geophys. Res. Lett. 38, L20307, doi:10.1029/2011GL049336

Shelly, D. R., D. P. Hill, F. Massin, J. Farrell, R. B. Smith, & T. Taira. (2013). A fluid-driven earthquake swarm on the margin of the Yellowstone caldera. J. Geophys. Res. Solid Earth 118, 4872–4886, doi:10.1002/jgrb.50362.

Sirait, A. M. M., A. Meltzer, J. Stachnik, M. Ramdhan, and N. Heryandoko. (2019). Evidence of subduction zone segmentation: Finite-difference tomography and earthquake relocation along the Java margin. AGU Fall Meeting, San Francisco, USA, 9 – 13 December 2019.

Smyth H., R. Hall, J. Hamilton, & P. Kinny. (2005). East Java: Cenozoic basin, volcanoes, and ancient basement. Proceeding, Indonesian Petroleum Association, Thirtieth Annual Convention and Exhibition, IPA05-G-045

Smyth, H., R. Hall, G, & J. Nichols. (2009). Cenozoic volcanic arc history of East Java, Indonesia: The stratigraphic record of eruptions on an active continental margin. In: Draut, A.E., Clift, P.D., and Scholl, D.W. (eds.), Formation and Applications of the Sedimentary Record in Arc Collision Zones: Geological Society of America Special Paper 436, p. 199–222, doi: 10.1130/2008.2436(10)

Thompson G. & Reyes, C. (2018). GISMO - a seismic data analysis toolbox for MATLAB (Version 1.20b), http://geoscience-community-codes.github.io/GISMO/, http://doi.org/10.5281/zenodo.1404723

van Keken, P. E., B. R. Hacker, E. M. Syracuse, & G. A. Abers. (2011). Subduction factory: 4. Depth‐dependent flux of H2O from subducting slabs worldwide, J. Geophys. Res., 116, B01401, doi:10.1029/2010JB007922

Vavryčuk V. & P. Hrubcová. (2017). Seismological evidence of fault weakening due to erosion by fluids from observations of intraplate earthquake swarms. J. Geophys. Res. Solid Earth 122, 3701–3718, doi:10.1002/2017JB013958

Vidale, J. E. & P. M. Shearer. (2006). A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. J. Geophys. Res., 111, B05312, doi:10.1029/2005JB004034

Wessel, P., W. H. F. Smith, R. Scharroo, J. Luis, & F. Wobbe (2013). Generic Mapping Tools: Improved Version Released, EOS Trans. AGU 94, 409–410, doi:10.1002/2013EO450001.

White, L. T., N. Rawlinson, G. S. Lister, F. Waldhauser, B. Hejrani, D. A. Thompson, D. Tanner, C. G. Macpherson, H. Tkalčić, & J. P. Morgan. (2019). Earth's deepest earthquake swarms track fluid ascent beneath nascent arc volcanoes. Earth Planet. Sci. Lett. 521, 25–36, http://doi.org/10.1016/j.epsl.2019.05.048



Cara Mengutip

Sirait, A., dan I. Fatchurochman. “Fluid-Related Earthquake Swarms at East Java Forearc”. Jurnal Geosains Terapan, vol. 5, no. 2, Januari 2023, https://geosainsterapan.id/index.php/id/article/view/82.



Artikel Ilmiah