Application of Electrical Resistivity Method with Peak and Flat Base Electrodes to Detect A Potential Water Leakage Underneath A Water Pool in Kiara Payung, Sumedang, West Java
Kata Kunci:
Electrical Resistivity, Peak Electrode, Flat Base Electrode, Least-Square inversion, Robust Constraint InversionAbstrak
This study aims to detect potential leakage underneath a water pool made of concrete using the electrical resistivity method with peak and flat base electrodes. Peak electrodes cannot be used on hard materials such as concrete because they can damage the concrete structure, while flat base electrodes can be used without causing any damage to the structure. This study was performed using a single profile, along which electrical resistivity measurements were conducted with different electrode combinations: all peak electrodes, a combination of peak and flat base electrodes, and all flat base electrodes. The maximum profile length was 117.5 meters with a spacing between electrodes of 2.5 meters and using a total of 48 electrodes. The measured apparent resistivity was inverted using the least-square and robust constraint inversion methods to obtain 2D true resistivity sections. An analysis of the 2D sections was conducted based on the resistivity profile, model errors, and ability to resolve the water pool geometry. The results show that the inverted model using the robust constraint method with flat base electrodes has the best result, which exhibits a clear boundary between the water pool and its surrounding soil, has a smaller error, and is able to resolve the water pool geometry compared to other models. This inversion result indicates no leakage occurs underneath the water pool. Therefore, the electrical resistivity method using flat base electrodes can be used for long-term maintaining the water pool in the study area and should be used in other geoelectric resistivity studies on hard surfaces.
Referensi
Adhe, A., Waterman, & Nurkhamin. (2022). Perbandingan Hasil Deteksi Air Tanah Dengan Metode Geolistrik Konfigurasi Schlumberger, Wenner, Wenner-Schlumberger, Dipole- Dipole Dan Pole-Pole. Prosiding Nasional Rekayasa Teknologi Industri Dan Informasi XVII Tahun 2022 (ReTII), 132-139.
Athanasiou, E. N., Tsourlos, P. I., Vargemezis, G. N., Papazachos, C. B., & Tsokas, G. N. (2007). Non‐destructive DC resistivity surveying using flat‐base electrodes. In Near Surface Geophysics (Vol. 5, Issue 4, pp. 263–272). European Association of Geoscientists & Engineers. https://doi.org/10.3997/1873-0604.2007008
Carrara, E., Carrozzo, M. T., Fedi, M., Florio, G., Negri, S., Paoletti, V., Paolillo, G., Quarta, T., Rapolla, A., & Roberti, N. (2001). Resistivity and Radar surveys at the Archaeological site of Ercolano. Journal of Environmental and Engineering Geophysics, 6(3), 123–132. https://doi.org/10.4133/JEEG6.3.123
Chabaane, A., Redhaounia, B., & Gabtni, H. (2017). Combined application of vertical electrical sounding and 2D electrical resistivity imaging for geothermal groundwater characterization: Hammam Sayala hot spring case study (NW Tunisia). Journal of African Earth Sciences, 134, 292–298. https://doi.org/10.1016/j.jafrearsci.2017.07.003
deGroot‐Hedlin, C., & Constable, S. (1990). Occam's inversion to generate smooth, two‐ dimensional models from magnetotelluric data. GEOPHYSICS, 55(12), 1613–1624. https://doi.org/10.1190/1.1442813
Dwight, H. B. (1936). Calculation of Resistances to Ground. Transactions of the American Institute of Electrical Engineers, 55(12), 1319–1328. https://doi.org/10.1109/T- AIEE.1936.5057209
Grandis, H. (2009). Pengantar Pemodelan Inversi Geofisika. Himpunan Ahli Geofisika Indonesia (HAGI).
Karavul, C., Karaaslan, H., & Demirkol, A. (2016). Investigation of structures in the Alabanda Bouleuterion by electrical resistivity method. Arabian Journal of Geosciences, 9(7), 511. https://doi.org/10.1007/s12517-016-2535-2
Kurniawan, M. F., Koesuma, S., & Darsono. (2017). Perbandingan Elektroda Konvensional dan Elektroda Tempel pada Metode Resistivitas untuk Identifikasi Model Anomali Bawah Permukaan. Prosiding Pertemuan Ilmiah XXXI HFI Jateng & DIY, 33-37.
Loke, M. H. (1999). Electrical Imaging Surveys for Environmental and Engineering Studies: A Practical Guide to 2D and 3D Surveys. 2, 70.
Loke, M. H. (2022). Tutorial: 2D and 3D Electrical Imaging Surveys. www.geotomofost.com. Loke, M. H., Acworth, I., & Dahlin, T. (2003). A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34(3), 182–187. https://doi.org/10.1071/EG03182
Loke, M. H., & Lane, J., John W. (2004). Inversion of Data from Electrical Resistivity Imaging Surveys in Water-Covered Areas. Exploration Geophysics, 35(4), 266–271. https://doi.org/10.1071/EG04266
Mohamaden, M. I. I., Hamouda, A. Z., & Mansour, S. (2016). Application of electrical resistivity method for groundwater exploration at the Moghra area, Western Desert, Egypt. The Egyptian Journal of Aquatic Research, 42(3), 261–268. https://doi.org/10.1016/j.ejar.2016.06.002
Mukmin, M., Kali, A., & Mukhlis, B. (2014). Perbandingan Nilai Tahanan Pertanahan Pada Area Reklamasi Pantai (Citraland). Jurnal Metrik, 1(1).
Oyeyemi, K. D., Aizebeokhai, A. P., Metwaly, M., Omobulejo, O., Sanuade, O. A., & Okon, E. E. (2022). Assessing the suitable electrical resistivity arrays for characterization of basement aquifers using numerical modeling. Heliyon, 8(5), e09427. https://doi.org/10.1016/j.heliyon.2022.e09427
Putra, F. D., Paembonan, Y., & Rizki, R. (2020). Aplikasi Metode Flat Base Electrical Resistivity Survey Untuk Mengetahui Kerusakan di Jalan Terusan Ryacudu Lampung Selatan. Jurnal Geosaintek, 6(3). http://dx.doi.org/10.12962/j25023659.v6i3.7890
Reynolds, J. M. (1997). An Introduction to Applied and Environmental Geophysics. Chichester: John Wiley and Sons Ltd.
Riwayat, A. I., Ahmad Nazri, M. A., & Zainal Abidin, M. H. (2018). Application of Electrical Resistivity Method (ERM) in Groundwater Exploration. Journal of Physics: Conference Series, 995(1), 012094. https://doi.org/10.1088/1742-6596/995/1/012094
Sasaki, Y. (1992). Resolution of Resistivity Tomography Inferred from Numerical Simulation. In Geophysical Prospecting (Vol. 40, Issue 4, pp. 453–463). European Association of Geoscientists & Engineers. https://doi.org/10.1111/j.1365-2478.1992.tb00536.x
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics Second Edition. Melbourne: Cambridge University.
Yuliadi, H., Hardi, S., & Rohana, R. (2021). Analisis Perbandingan Tahanan Pentanahan Pada Elektroda Batang Dan Plat Untuk Perbaikan Nilai Resistansi Pembumian. Jurnal Teknik Elektro, 4(1). https://doi.org/DOI: https://doi.org/10.30596/rele.v4i1.7828
Zouhri, L., & Lutz, P. (2010). A comparison of peak and plate electrodes in electrical resistivity tomography: Application to the chalky groundwater of the Beauvais aquifer (northern part of the Paris basin, France). Hydrological Processes, 24(21), 3040–3052. https://doi.org/10.1002/hyp.7719s
Unduhan
Diterbitkan
Cara Mengutip
Lisensi
Hak Cipta (c) 2024 Jurnal Geosains Terapan
Artikel ini berlisensi Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.